Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
ABSTRACT The continuously growing demand for dietary protein raises the urgency of expanding supply chains beyond conventional animal‐based sources. Microalgae are well‐known as biofactories due to their high photosynthetic efficiency, rapid growth, minimal resource requirements, and ability to thrive in diverse environments. To maximize protein production, mixotrophic cultivation is often preferred, as it enables significantly higher biomass yields. Key factors, including light quality (intensity and wavelength), carbon sources (inorganic CO2and organic substrates), and nitrogen availability, play significant roles in directing metabolic fluxes toward protein biosynthesis, the modulation of which refers to biochemical engineering. In the field of genetic engineering, precise gene editing tools, especially CRISPR/Cas9, have demonstrated considerable promise, although the application in enhancing microalgal protein production remains challenging and limited. By contrast, random mutagenesis has been proven effective in improving multiple strains for increased protein accumulation. Beyond upstream strategies, downstream engineering, including drying, extrusion forming, and fermentation, is emphasized for improving the nutritional and functional properties of microalgal proteins for food and feed applications in the form of whole cells. Furthermore, extracted microalgal proteins broaden the range of potential applications, whose quality is significantly affected by the methods used for cell disruption/extraction, purification, and hydrolysis. Novel biorefinery strategies are also discussed to enhance economic viability by integrating value‐added biomass utilization within a protein‐first recovery scheme. Altogether, by combining advances in cultivation technologies, strain modification, processing, and supportive policy frameworks, this review supports the development of sustainable protein production platforms based on microalgae.more » « lessFree, publicly-accessible full text available November 1, 2026
-
Abstract Van der Waals (vdW) material Fe 5 GeTe 2 , with its long-range ferromagnetic ordering near room temperature, has significant potential to become an enabling platform for implementing novel spintronic and quantum devices. To pave the way for applications, it is crucial to determine the magnetic properties when the thickness of Fe 5 GeTe 2 reaches the few-layers regime. However, this is highly challenging due to the need for a characterization technique that is local, highly sensitive, artifact-free, and operational with minimal fabrication. Prior studies have indicated that Curie temperature T C can reach up to close to room temperature for exfoliated Fe 5 GeTe 2 flakes, as measured via electrical transport; there is a need to validate these results with a measurement that reveals magnetism more directly. In this work, we investigate the magnetic properties of exfoliated thin flakes of vdW magnet Fe 5 GeTe 2 via quantum magnetic imaging technique based on nitrogen vacancy centers in diamond. Through imaging the stray fields, we confirm room-temperature magnetic order in Fe 5 GeTe 2 thin flakes with thickness down to 7 units cell. The stray field patterns and their response to magnetizing fields with different polarities is consistent with previously reported perpendicular easy-axis anisotropy. Furthermore, we perform imaging at different temperatures and determine the Curie temperature of the flakes at ≈300 K. These results provide the basis for realizing a room-temperature monolayer ferromagnet with Fe 5 GeTe 2 . This work also demonstrates that the imaging technique enables rapid screening of multiple flakes simultaneously as well as time-resolved imaging for monitoring time-dependent magnetic behaviors, thereby paving the way towards high throughput characterization of potential two-dimensional (2D) magnets near room temperature and providing critical insights into the evolution of domain behaviors in 2D magnets due to degradation.more » « less
An official website of the United States government
